Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.463
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732005

In calcium nephrolithiasis (CaNL), most calcium kidney stones are identified as calcium oxalate (CaOx) with variable amounts of calcium phosphate (CaP), where CaP is found as the core component. The nucleation of CaP could be the first step of CaP+CaOx (mixed) stone formation. High urinary supersaturation of CaP due to hypercalciuria and an elevated urine pH have been described as the two main factors in the nucleation of CaP crystals. Our previous in vivo findings (in mice) show that transient receptor potential canonical type 3 (TRPC3)-mediated Ca2+ entry triggers a transepithelial Ca2+ flux to regulate proximal tubular (PT) luminal [Ca2+], and TRPC3-knockout (KO; -/-) mice exhibited moderate hypercalciuria and microcrystal formation at the loop of Henle (LOH). Therefore, we utilized TRPC3 KO mice and exposed them to both hypercalciuric [2% calcium gluconate (CaG) treatment] and alkalineuric conditions [0.08% acetazolamide (ACZ) treatment] to generate a CaNL phenotype. Our results revealed a significant CaP and mixed crystal formation in those treated KO mice (KOT) compared to their WT counterparts (WTT). Importantly, prolonged exposure to CaG and ACZ resulted in a further increase in crystal size for both treated groups (WTT and KOT), but the KOT mice crystal sizes were markedly larger. Moreover, kidney tissue sections of the KOT mice displayed a greater CaP and mixed microcrystal formation than the kidney sections of the WTT group, specifically in the outer and inner medullary and calyceal region; thus, a higher degree of calcifications and mixed calcium lithiasis in the kidneys of the KOT group was displayed. In our effort to find the Ca2+ signaling pathophysiology of PT cells, we found that PT cells from both treated groups (WTT and KOT) elicited a larger Ca2+ entry compared to the WT counterparts because of significant inhibition by the store-operated Ca2+ entry (SOCE) inhibitor, Pyr6. In the presence of both SOCE (Pyr6) and ROCE (receptor-operated Ca2+ entry) inhibitors (Pyr10), Ca2+ entry by WTT cells was moderately inhibited, suggesting that the Ca2+ and pH levels exerted sensitivity changes in response to ROCE and SOCE. An assessment of the gene expression profiles in the PT cells of WTT and KOT mice revealed a safeguarding effect of TRPC3 against detrimental processes (calcification, fibrosis, inflammation, and apoptosis) in the presence of higher pH and hypercalciuric conditions in mice. Together, these findings show that compromise in both the ROCE and SOCE mechanisms in the absence of TRPC3 under hypercalciuric plus higher tubular pH conditions results in higher CaP and mixed crystal formation and that TRPC3 is protective against those adverse effects.


Calcium Oxalate , Hypercalciuria , Kidney Calculi , Mice, Knockout , Animals , Hypercalciuria/metabolism , Hypercalciuria/genetics , Hydrogen-Ion Concentration , Mice , Calcium Oxalate/metabolism , Kidney Calculi/metabolism , Kidney Calculi/etiology , Kidney Calculi/pathology , Calcium Phosphates/metabolism , Nephrolithiasis/metabolism , Nephrolithiasis/genetics , Nephrolithiasis/pathology , Calcium/metabolism , TRPC Cation Channels/metabolism , TRPC Cation Channels/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Male , Disease Models, Animal , Mice, Inbred C57BL , Acetazolamide/pharmacology
2.
Cell Mol Biol Lett ; 29(1): 65, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714951

The engineered clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system is currently widely applied in genetic editing and transcriptional regulation. The catalytically inactivated CasRx (dCasRx) has the ability to selectively focus on the mRNA coding region without disrupting transcription and translation, opening up new avenues for research on RNA modification and protein translation control. This research utilized dCasRx to create a translation-enhancement system for mammals called dCasRx-eIF4GI, which combined eukaryotic translation initiation factor 4G (eIF4GI) to boost translation levels of the target gene by recruiting ribosomes, without affecting mRNA levels, ultimately increasing translation levels of different endogenous proteins. Due to the small size of dCasRx, the dCasRx-eIF4GI translation enhancement system was integrated into a single viral vector, thus optimizing the delivery and transfection efficiency in subsequent applications. Previous studies reported that ferroptosis, mediated by calcium oxalate (CaOx) crystals, significantly promotes stone formation. In order to further validate its developmental potential, it was applied to a kidney stone model in vitro and in vivo. The manipulation of the ferroptosis regulatory gene FTH1 through single-guide RNA (sgRNA) resulted in a notable increase in FTH1 protein levels without affecting its mRNA levels. This ultimately prevented intracellular ferroptosis and protected against cell damage and renal impairment caused by CaOx crystals. Taken together, this study preliminarily validated the effectiveness and application prospects of the dCasRx-eIF4GI translation enhancement system in mammalian cell-based disease models, providing novel insights and a universal tool platform for protein translation research and future therapeutic approaches for nephrolithiasis.


CRISPR-Cas Systems , Calcium Oxalate , Kidney , Animals , Humans , Male , Mice , Calcium Oxalate/metabolism , CRISPR-Cas Systems/genetics , Eukaryotic Initiation Factor-4G/metabolism , Eukaryotic Initiation Factor-4G/genetics , Ferritins , Ferroptosis/genetics , Gene Editing/methods , HEK293 Cells , Kidney/metabolism , Kidney/pathology , Kidney Calculi/genetics , Kidney Calculi/metabolism , Oxidoreductases/metabolism , Oxidoreductases/genetics , Protein Biosynthesis/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism
3.
J Cell Mol Med ; 28(7): e18235, 2024 Apr.
Article En | MEDLINE | ID: mdl-38509735

Kidney stone, one of the oldest known diseases, has plagued humans for centuries, consistently imposing a heavy burden on patients and healthcare systems worldwide due to their high incidence and recurrence rates. Advancements in endoscopy, imaging, genetics, molecular biology and bioinformatics have led to a deeper and more comprehensive understanding of the mechanism behind nephrolithiasis. Kidney stone formation is a complex, multi-step and long-term process involving the transformation of stone-forming salts from free ions into asymptomatic or symptomatic stones influenced by physical, chemical and biological factors. Among the various types of kidney stones observed in clinical practice, calcareous nephrolithiasis is currently the most common and exhibits the most intricate formation mechanism. Extensive research suggests that calcareous nephrolithiasis primarily originates from interstitial subepithelial calcified plaques and/or calcified blockages in the openings of collecting ducts. These calcified plaques and blockages eventually come into contact with urine in the renal pelvis, serving as a nidus for crystal formation and subsequent stone growth. Both pathways of stone formation share similar mechanisms, such as the drive of abnormal urine composition, involvement of oxidative stress and inflammation, and an imbalance of stone inhibitors and promoters. However, they also possess unique characteristics. Hence, this review aims to provide detailed description and present recent discoveries regarding the formation processes of calcareous nephrolithiasis from two distinct birthplaces: renal interstitium and tubule lumen.


Calcinosis , Kidney Calculi , Humans , Kidney Medulla/metabolism , Kidney Calculi/complications , Kidney Calculi/metabolism , Calcinosis/metabolism , Endoscopy , Inflammation/metabolism
4.
Biomed Pharmacother ; 173: 116393, 2024 Apr.
Article En | MEDLINE | ID: mdl-38461684

Urinary extracellular vesicles (uEVs) play important roles in physiologic condition and various renal/urological disorders. However, their roles in kidney stone disease remain unclear. This study aimed to examine modulatory effects of large and small uEVs derived from normal human urine on calcium oxalate (CaOx) crystals (the main component in kidney stones). After isolation, large uEVs, small uEVs and total urinary proteins (TUPs) with equal (protein equivalent) concentration were added into various crystal assays to compare with the control (without uEVs or TUPs). TUPs strongly inhibited CaOx crystallization, growth, aggregation and crystal-cell adhesion. Large uEVs had lesser degree of inhibition against crystallization, growth and crystal-cell adhesion, and comparable degree of aggregation inhibition compared with TUPs. Small uEVs had comparable inhibitory effects as of TUPs for all these crystal assays. However, TUPs and large uEVs slightly promoted CaOx invasion through extracellular matrix, whereas small uEVs did not affect this. Matching of the proteins reported in six uEVs datasets with those in the kidney stone modulator (StoneMod) database revealed that uEVs contained 18 known CaOx stone modulators (mainly inhibitors). These findings suggest that uEVs derived from normal human urine serve as CaOx stone inhibitors to prevent healthy individuals from kidney stone formation.


Calcium Oxalate , Kidney Calculi , Pyrenes , Humans , Calcium Oxalate/metabolism , Crystallization , Kidney Calculi/metabolism , Proteins , Extracellular Matrix/metabolism
5.
J Agric Food Chem ; 72(12): 6372-6388, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38471112

Oxidative damage to the kidneys is a primary factor in the occurrence of kidney stones. This study explores the inhibitory effect of Porphyra yezoensis polysaccharides (PYP) on oxalate-induced renal injury by detecting levels of oxidative damage, expression of adhesion molecules, and damage to intracellular organelles and revealed the molecular mechanism by molecular biology methods. Additionally, we validated the role of PYP in vivo using a crystallization model of hyperoxalate-induced rats. PYP effectively scavenged the overproduction of reactive oxygen species (ROS) in HK-2 cells, inhibited the adhesion of calcium oxalate (CaOx) crystals on the cell surface, unblocked the cell cycle, restored the depolarization of the mitochondrial membrane potential, and inhibited cell death. PYP upregulated the expression of antioxidant proteins, including Nrf2, HO-1, SOD, and CAT, while decreasing the expression of Keap-1, thereby activating the Keap1/Nrf2 signaling pathway. PYP inhibited CaOx deposition in renal tubules in the rat crystallization model, significantly reduced high oxalate-induced renal injury, decreased the levels of the cell surface adhesion proteins, improved renal function in rats, and ultimately inhibited the formation of kidney stones. Therefore, PYP, which has crystallization inhibition and antioxidant properties, may be a therapeutic option for the treatment of kidney stones.


Calcium Oxalate , Edible Seaweeds , Kidney Calculi , Porphyra , Rats , Animals , Kelch-Like ECH-Associated Protein 1/metabolism , Calcium Oxalate/metabolism , Calcium Oxalate/pharmacology , Antioxidants/metabolism , NF-E2-Related Factor 2/metabolism , Kidney/metabolism , Kidney Calculi/metabolism , Oxidative Stress , Oxalates/metabolism , Oxalates/pharmacology , Polysaccharides/metabolism
6.
Urolithiasis ; 52(1): 51, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38554162

Macrophages play a role in nephrolithiasis, offering the possibility of developing macrophage-mediated preventive therapies. To establish a system for screening drugs that could prevent the formation of kidney stones, we aimed to develop a model using human induced pluripotent stem cell (iPSC)-derived macrophages to study phagocytosis of calcium oxalate monohydrate (COM) crystals. Human iPSCs (201B7) were cultured. CD14+ monocytes were recovered using a stepwise process that involved the use of growth factors and cytokines. These cells were then allowed to differentiate into M1 and M2 macrophages. The macrophages were co-cultured with COM crystals and used in the phagocytosis experiments. Live cell imaging and polarized light observation via super-resolution microscopy were used to visualize phagocytosis. Localization of phagocytosed COM crystals was observed using transmission electron microscopy. Intracellular fluorescence intensity was measured using imaging cytometry to quantify phagocytosis. Human iPSCs successfully differentiated into M1 and M2 macrophages. M1 macrophages adhered to the culture plate and moved COM crystals from the periphery to cell center over time, whereas M2 macrophages did not adhere to the culture plate and actively phagocytosed the surrounding COM crystals. Fluorescence assessment over a 24-h period showed that M2 macrophages exhibited higher intracellular fluorescence intensity (5.65-times higher than that of M1 macrophages at 4.5 h) and maintained this advantage for 18 h. This study revealed that human iPSC-derived macrophages have the ability to phagocytose COM crystals, presenting a new approach for studying urinary stone formation and highlighting the potential of iPSC-derived macrophages as a tool to screen nephrolithiasis-related drugs.


Induced Pluripotent Stem Cells , Kidney Calculi , Humans , Calcium Oxalate/metabolism , Induced Pluripotent Stem Cells/metabolism , Macrophages/metabolism , Phagocytosis , Kidney Calculi/metabolism
7.
Aging (Albany NY) ; 16(7): 5987-6007, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38536018

Ferroptosis is a specific type of programmed cell death characterized by iron-dependent lipid peroxidation. Understanding the involvement of ferroptosis in calcium oxalate (CaOx) stone formation may reveal potential targets for this condition. The publicly available dataset GSE73680 was used to identify 61 differentially expressed ferroptosis-related genes (DEFERGs) between normal kidney tissues and Randall's plaques (RPs) from patients with nephrolithiasis through employing weighted gene co-expression network analysis (WGCNA). The findings were validated through in vitro and in vivo experiments using CaOx nephrolithiasis rat models induced by 1% ethylene glycol administration and HK-2 cell models treated with 1 mM oxalate. Through WGCNA and the machine learning algorithm, we identified LAMP2 and MDM4 as the hub DEFERGs. Subsequently, nephrolithiasis samples were classified into cluster 1 and cluster 2 based on the expression of the hub DEFERGs. Validation experiments demonstrated decreased expression of LAMP2 and MDM4 in CaOx nephrolithiasis animal models and cells. Treatment with ferrostatin-1 (Fer-1), a ferroptosis inhibitor, partially reversed oxidative stress and lipid peroxidation in CaOx nephrolithiasis models. Moreover, Fer-1 also reversed the expression changes of LAMP2 and MDM4 in CaOx nephrolithiasis models. Our findings suggest that ferroptosis may be involved in the formation of CaOx kidney stones through the regulation of LAMP2 and MDM4.


Biomarkers , Ferroptosis , Nephrolithiasis , Ferroptosis/drug effects , Animals , Nephrolithiasis/metabolism , Nephrolithiasis/genetics , Nephrolithiasis/pathology , Rats , Biomarkers/metabolism , Humans , Male , Calcium Oxalate/metabolism , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Kidney Calculi/metabolism , Kidney Calculi/genetics , Kidney Calculi/pathology , Cyclohexylamines/pharmacology , Phenylenediamines/pharmacology , Disease Models, Animal , Rats, Sprague-Dawley , Cell Line
8.
Adv Sci (Weinh) ; 11(17): e2309234, 2024 May.
Article En | MEDLINE | ID: mdl-38380498

The CRISPR-Cas system, initially for DNA-level gene editing and transcription regulation, has expanded to RNA targeting with the Cas13d family, notably the RfxCas13d. This advancement allows for mRNA targeting with high specificity, particularly after catalytic inactivation, broadening the exploration of translation regulation. This study introduces a CRISPR-dCas13d-eIF4G fusion module, combining dCas13d with the eIF4G translation regulatory element, enhancing target mRNA translation levels. This module, using specially designed sgRNAs, selectively boosts protein translation in targeted tissue cells without altering transcription, leading to notable protein expression upregulation. This system is applied to a kidney stone disease model, focusing on ferroptosis-linked GPX4 gene regulation. By targeting GPX4 with sgRNAs, its protein expression is upregulated in human renal cells and mouse kidney tissue, countering ferroptosis and resisting calcium oxalate-induced cell damage, hence mitigating stone formation. This study evidences the CRISPR-dCas13d-eIF4G system's efficacy in eukaryotic cells, presenting a novel protein translation research approach and potential kidney stone disease treatment advancements.


CRISPR-Cas Systems , Calcium Oxalate , Disease Models, Animal , Eukaryotic Initiation Factor-4G , Ferroptosis , Ferroptosis/genetics , Mice , Animals , Calcium Oxalate/metabolism , CRISPR-Cas Systems/genetics , Humans , Eukaryotic Initiation Factor-4G/genetics , Eukaryotic Initiation Factor-4G/metabolism , Kidney Calculi/genetics , Kidney Calculi/metabolism , Protein Biosynthesis/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
9.
Tissue Barriers ; 12(1): 2210051, 2024 01 02.
Article En | MEDLINE | ID: mdl-37162265

Defects of tight junction (TJ) are involved in many diseases related to epithelial cell functions, including kidney stone disease (KSD), which is a common disease affecting humans for over a thousand years. This review provides brief overviews of KSD and TJ, and summarizes the knowledge on crystal-induced defects of TJ in renal tubular epithelial cells (RTECs) in KSD. Calcium oxalate (CaOx) crystals, particularly COM, disrupt TJ via p38 MAPK and ROS/Akt/p38 MAPK signaling pathways, filamentous actin (F-actin) reorganization and α-tubulin relocalization. Stabilizing p38 MAPK signaling, reactive oxygen species (ROS) production, F-actin and α-tubulin by using SB239063, N-acetyl-L-cysteine (NAC), phalloidin and docetaxel, respectively, successfully prevent the COM-induced TJ disruption and malfunction. Additionally, genetic disorders of renal TJ, including mutations and single nucleotide polymorphisms (SNPs) of CLDN2, CLDN10b, CLDN14, CLDN16 and CLDN19, also affect KSD. Finally, the role of TJ as a potential target for KSD therapeutics and prevention is also discussed.


Kidney Calculi , Tight Junctions , Humans , Tight Junctions/metabolism , Reactive Oxygen Species/metabolism , Actins/metabolism , Tubulin/metabolism , Kidney Calculi/etiology , Kidney Calculi/chemistry , Kidney Calculi/metabolism , Calcium Oxalate/chemistry , Calcium Oxalate/metabolism , Calcium Oxalate/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism
10.
Biomed Pharmacother ; 170: 115988, 2024 Jan.
Article En | MEDLINE | ID: mdl-38061137

Epigallocatechin-3-gallate (EGCG), a predominant phytochemical in tea plant, has been reported to prevent kidney stone formation but with vague mechanism. We investigated modulatory effects of EGCG (at 0.1-100 µM) on calcium oxalate monohydrate (COM) crystals at various stages of kidney stone development. EGCG significantly increased crystal size (at 1-100 µM), but decreased crystal number (at 10-100 µM), resulting in unchanged crystal mass and volume. Interestingly, EGCG at 10-100 µM caused morphological change of the crystals from typical monoclinic prismatic to coffee-bean-like shape, which represented atypical/aberrant form of COM as confirmed by attenuated total reflection - Fourier transform infrared (ATR-FTIR) spectroscopy. EGCG at all concentrations significantly inhibited crystal growth in a concentration-dependent manner. However, only 100 µM and 10-100 µM of EGCG significantly inhibited crystal aggregation and crystal-cell adhesion, respectively. Immunofluorescence staining (without permeabilization) revealed that surface expression of heat shock protein 90 (HSP90) (a COM crystal receptor) on MDCK renal cells was significantly decreased by 10 µM EGCG, whereas other surface COM receptors (annexin A1, annexin A2, enolase 1 and ezrin) remained unchanged. Immunoblotting showed that 10 µM EGCG did not alter total level of HSP90 in MDCK cells, implicating that its decreased surface expression was due to translocation. Our data provide a piece of evidence explaining mechanism underlying the anti-lithiatic property of EGCG by inhibition of COM crystal growth, aggregation and crystal-cell adhesion via reduced surface expression of HSP90, which is an important COM crystal receptor.


Calcium Oxalate , Kidney Calculi , Humans , Cell Adhesion , Calcium Oxalate/metabolism , Crystallization , Kidney Calculi/metabolism
11.
Aging (Albany NY) ; 15(24): 14749-14763, 2023 Dec 27.
Article En | MEDLINE | ID: mdl-38154105

BACKGROUND: Renal calculi are a very prevalent disease with a high incidence. Calcium oxalate (CaOx) is a primary constituent of kidney stones. Our paper probes the regulatory function and mechanism of miR-184 in CaOx-mediated renal cell damage. METHODS: CaOx was used to treat HK2 cells and human podocytes (HPCs) to simulate kidney cell damage. The qRT-PCR technique checked the profiles of miR-184 and IGF1R. The examination of cell proliferation was conducted employing CCK8. TUNEL staining was used to monitor cell apoptosis. Western blot analysis was used to determine the protein profiles of apoptosis-concerned related proteins (including Mcl1, Bcl-XL, and Caspase-3), the NF-κB, Nrf2/HO-1, and Rap1 signaling pathways. ELISA confirmed the levels of the inflammatory factors IL-6, TNF-α, MCP1, and ICAM1. The targeting relationship between miR-184 and IGF1R was validated by dual luciferase assay and RNA immunoprecipitation assay. RESULTS: Glyoxylate-induced rat kidney stones model and HK2 and HPC cells treated with CaOx demonstrated an increase in the miR-184 profile. Inhibiting miR-184 relieved CaOx-mediated renal cell inflammation, apoptosis and oxidative stress and activated the Rap1 pathway. IGF1R was targeted by miR-184. IGF1R activation by IGF1 attenuated the effects of miR-184 on renal cell damage, and Hippo pathway suppression reversed the inhibitory effect of miR-184 knockdown on renal cell impairment. CONCLUSIONS: miR-184 downregulation activates the Rap1 signaling pathway to ameliorate renal cell damage mediated by CaOx.


Kidney Calculi , MicroRNAs , Animals , Humans , Rats , Calcium Oxalate/metabolism , Kidney/metabolism , Kidney Calculi/genetics , Kidney Calculi/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction
12.
R I Med J (2013) ; 106(11): 9-13, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-38015778

Idiopathic hypercalciuria is defined as excessive urine calcium excretion in the absence of an identifiable cause. It has been strongly associated with the risk of calcium kidney stone formation. Animal and human studies have suggested excessive bone mineral loss or increased gastrointestinal calcium absorption with abnormal renal calcium excretion may contribute to this process. In this article we will review the complex pathophysiology of idiopathic hypercalciuria and discuss clinical management and challenges.


Hypercalciuria , Kidney Calculi , Animals , Humans , Hypercalciuria/complications , Hypercalciuria/metabolism , Calcium/metabolism , Kidney Calculi/complications , Kidney Calculi/metabolism , Kidney/metabolism
13.
Inflamm Res ; 72(12): 2111-2126, 2023 Dec.
Article En | MEDLINE | ID: mdl-37924395

OBJECTIVE AND DESIGN: Kidney stones commonly occur with a 50% recurrence rate within 5 years, and can elevate the risk of chronic kidney disease. Macrophage-to-myofibroblast transition (MMT) is a newly discovered mechanism that leads to progressive fibrosis in different forms of kidney disease. In this study, we aimed to investigate the role of MMT in renal fibrosis in glyoxylate-induced kidney stone mice and the mechanism by which signal transducer and activator of transcription 6 (STAT6) regulates MMT. METHODS: We collected non-functioning kidneys from patients with stones, established glyoxylate-induced calcium oxalate stone mice model and treated AS1517499 every other day in the treatment group, and constructed a STAT6-knockout RAW264.7 cell line. We first screened the enrichment pathway of the model by transcriptome sequencing; detected renal injury and fibrosis by hematoxylin eosin staining, Von Kossa staining and Sirius red staining; detected MMT levels by multiplexed immunofluorescence and flow cytometry; and verified the binding site of STAT6 at the PPARα promoter by chromatin immunoprecipitation. Fatty acid oxidation (FAO) and fibrosis-related genes were detected by western blot and real-time quantitative polymerase chain reaction. RESULTS: In this study, we found that FAO was downregulated, macrophages converted to myofibroblasts, and STAT6 expression was elevated in stone patients and glyoxylate-induced kidney stone mice. The promotion of FAO in macrophages attenuated MMT and upregulated fibrosis-related genes induced by calcium oxalate treatment. Further, inhibition of peroxisome proliferator-activated receptor-α (PPARα) eliminated the effect of STAT6 deletion on FAO and fibrosis-associated protein expression. Pharmacological inhibition of STAT6 also prevented the development of renal injury, lipid accumulation, MMT, and renal fibrosis. Mechanistically, STAT6 transcriptionally represses PPARα and FAO through cis-inducible elements located in the promoter region of the gene, thereby promoting MMT and renal fibrosis. CONCLUSIONS: These findings establish a role for STAT6 in kidney stone injury-induced renal fibrosis, and suggest that STAT6 may be a therapeutic target for progressive renal fibrosis in patients with nephrolithiasis.


Kidney Calculi , Myofibroblasts , Animals , Humans , Mice , Calcium Oxalate/metabolism , Calcium Oxalate/pharmacology , Fatty Acids/metabolism , Fibrosis , Glyoxylates/metabolism , Glyoxylates/pharmacology , Kidney/pathology , Kidney Calculi/metabolism , Kidney Calculi/pathology , Macrophages/metabolism , Myofibroblasts/pathology , Oxalates/metabolism , Oxalates/pharmacology , PPAR alpha/metabolism , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/metabolism
14.
Redox Biol ; 67: 102919, 2023 11.
Article En | MEDLINE | ID: mdl-37806112

Oxalate is a small compound found in certain plant-derived foods and is a major component of calcium oxalate (CaOx) kidney stones. Individuals that consume oxalate enriched meals have an increased risk of forming urinary crystals, which are precursors to CaOx kidney stones. We previously reported that a single dietary oxalate load induces nanocrystalluria and reduces monocyte cellular bioenergetics in healthy adults. The purpose of this study was to extend these investigations to identify specific oxalate-mediated mechanisms in monocytes and macrophages. We performed RNA-Sequencing analysis on monocytes isolated from healthy subjects exposed to a high oxalate (8 mmol) dietary load. RNA-sequencing revealed 1,198 genes were altered and Ingenuity Pathway Analysis demonstrated modifications in several pathways including Interleukin-10 (IL-10) anti-inflammatory cytokine signaling, mitochondrial metabolism and function, oxalic acid downstream signaling, and autophagy. Based on these findings, we hypothesized that oxalate induces mitochondrial and lysosomal dysfunction in monocytes and macrophages via IL-10 and reactive oxygen species (ROS) signaling which can be reversed with exogenous IL-10 or Mitoquinone (MitoQ; a mitochondrial targeted antioxidant). We exposed monocytes and macrophages to oxalate in an in-vitro setting which caused oxidative stress, a decline in IL-10 cytokine levels, mitochondrial and lysosomal dysfunction, and impaired autophagy in both cell types. Administration of exogenous IL-10 and MitoQ attenuated these responses. These findings suggest that oxalate impairs metabolism and immune response via IL-10 signaling and mitochondrial ROS generation in both monocytes and macrophages which can be potentially limited or reversed. Future studies will examine the benefits of these therapies on CaOx crystal formation and growth in vivo.


Kidney Calculi , Monocytes , Adult , Humans , Monocytes/metabolism , Oxalates , Reactive Oxygen Species/metabolism , Interleukin-10/metabolism , Calcium Oxalate/metabolism , Macrophages/metabolism , Cytokines/metabolism , Kidney Calculi/etiology , Kidney Calculi/metabolism , RNA
15.
Curr Opin Nephrol Hypertens ; 32(5): 490-495, 2023 09 01.
Article En | MEDLINE | ID: mdl-37530089

PURPOSE OF REVIEW: Kidney stone disease is caused by supersaturation of urine with certain metabolites and minerals. The urine composition of stone formers has been measured to prevent stone recurrence, specifically calcium, uric acid, oxalate, ammonia, citrate. However, these minerals and metabolites have proven to be unreliable in predicting stone recurrence. Metabolomics using high throughput technologies in well defined patient cohorts can identify metabolites that may provide insight into the pathogenesis of stones as well as offer possibilities in therapeutics. RECENT FINDINGS: Techniques including 1H-NMR, and liquid chromatography paired with tandem mass spectroscopy have identified multiple possible metabolites involved in stone formation. Compared to formers of calcium oxalate stones, healthy controls had higher levels of hippuric acid as well as metabolites involved in caffeine metabolism. Both the gut and urine microbiome may contribute to the altered metabolome of stone formers. SUMMARY: Although metabolomics has offered several potential metabolites that may be protective against or promote stone formation, the mechanisms behind these metabolomic profiles and their clinical significance requires further investigation.


Calcium Oxalate , Kidney Calculi , Humans , Calcium Oxalate/urine , Kidney Calculi/metabolism , Calcium/urine , Oxalates , Metabolomics
16.
Nat Commun ; 14(1): 4140, 2023 07 19.
Article En | MEDLINE | ID: mdl-37468493

Kidney stone disease causes significant morbidity and increases health care utilization. In this work, we decipher the cellular and molecular niche of the human renal papilla in patients with calcium oxalate (CaOx) stone disease and healthy subjects. In addition to identifying cell types important in papillary physiology, we characterize collecting duct cell subtypes and an undifferentiated epithelial cell type that was more prevalent in stone patients. Despite the focal nature of mineral deposition in nephrolithiasis, we uncover a global injury signature characterized by immune activation, oxidative stress and extracellular matrix remodeling. We also identify the association of MMP7 and MMP9 expression with stone disease and mineral deposition, respectively. MMP7 and MMP9 are significantly increased in the urine of patients with CaOx stone disease, and their levels correlate with disease activity. Our results define the spatial molecular landscape and specific pathways contributing to stone-mediated injury in the human papilla and identify associated urinary biomarkers.


Kidney Calculi , Kidney Medulla , Humans , Kidney Medulla/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 7 , Calcium Oxalate/metabolism , Transcriptome , Kidney Calculi/genetics , Kidney Calculi/metabolism
17.
Int Immunopharmacol ; 121: 110398, 2023 Aug.
Article En | MEDLINE | ID: mdl-37301123

Sirtuin 1 (SIRT1) protein is involved in macrophage differentiation, while NOTCH signaling affects inflammation and macrophage polarization. Inflammation and macrophage infiltration are typical processes that accompany kidney stone formation. However, the role and mechanism of SIRT1 in renal tubular epithelial cell injury caused by calcium oxalate (CaOx) deposition and the relationship between SIRT1 and the NOTCH signaling pathway in this urological disorder are unclear. This study investigated whether SIRT1 promotes macrophage polarization to inhibit CaOx crystal deposition and reduce renal tubular epithelial cell injury. Public single-cell sequencing data, RT-qPCR, immunostaining approaches, and Western blotting showed decreased SIRT1 expression in macrophages treated with CaOx or exposed to kidney stones. Macrophages overexpressing SIRT1 differentiated towards the anti-inflammatory M2 phenotype, significantly inhibiting apoptosis and alleviating injury in the kidneys of mice with hyperoxaluria. Conversely, decreased SIRT1 expression in CaOx-treated macrophages triggered Notch signaling pathway activation, promoting macrophage polarization towards the pro-inflammatory M1 phenotype. Our results suggest that SIRT1 promotes macrophage polarization towards the M2 phenotype by repressing the NOTCH signaling pathway, which reduces CaOx crystal deposition, apoptosis, and damage in the kidney. Therefore, we propose SIRT1 as a potential target for preventing disease progression in patients with kidney stones.


Calcium Oxalate , Kidney Calculi , Animals , Mice , Calcium Oxalate/chemistry , Inflammation/metabolism , Kidney/metabolism , Kidney Calculi/chemistry , Kidney Calculi/metabolism , Macrophages/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism
18.
Int Urol Nephrol ; 55(10): 2421-2429, 2023 Oct.
Article En | MEDLINE | ID: mdl-37368087

INTRODUCTION: Sanjin Paishi Decoction (SJPSD) has positive effects on stone prevention; however, there is a lack of convincing evidence in the prevention of calcium oxalate stones. This study aimed investigates the effect of SJPSD on calcium oxalate stones and to explore its mechanism. METHODS: The rat model of calcium oxalate stones was established and rats were treated with different doses of SJPSD. The pathological damage of kidney tissues was observed by HE staining, the deposition of calcium oxalate crystals in kidney tissues was examined by Von Kossa staining, and the levels of creatinine (CREA), urea (UREA), calcium (Ca), phosphorus (P), and magnesium (Mg) in serum were analyzed biochemically, the levels of IL-1ß, IL-6, and TNF-α in serum were measured by ELISA, and the protein expression of Raf1, MEK1, p-MEK1, ERK1/2, p-ERK1/2, and Cleaved caspase-3 in kidney tissues was analyzed by Western blot. Moreover, the changes in gut microbiota were analyzed by 16S rRNA sequencing. RESULTS: SJPSD attenuated the pathological damage of renal tissues, reduced the levels of CREA, UREA, Ca, P, and Mg, and inhibited the expression of Raf1, p-MEK1, p-ERK1/2, and Cleaved caspase-3 in renal tissues (P < 0.05). SJPSD treatment affected the composition of intestinal microbiota in rats with calcium oxalate stones. CONCLUSION: The mechanism of SJPSD inhibition of calcium oxalate stone injury in rats may be related to the inhibition of the MAPK signaling pathway and regulation of gut microbiota imbalance.


Gastrointestinal Microbiome , Kidney Calculi , Rats , Animals , Calcium Oxalate/metabolism , Kidney Calculi/drug therapy , Kidney Calculi/prevention & control , Kidney Calculi/metabolism , Caspase 3/metabolism , MAP Kinase Signaling System , RNA, Ribosomal, 16S , Calcium , Signal Transduction , Urea
19.
Int Urol Nephrol ; 55(7): 1671-1676, 2023 Jul.
Article En | MEDLINE | ID: mdl-37198517

OBJECTIVE: To investigate the relationship between plasma levels of sKL and Nrf2 and calcium oxalate calculi. METHODS: The clinical data of 135 patients with calcium oxalate calculi treated in the Department of Urology of the second affiliated Hospital of Xinjiang Medical University from February 2019 to December 2022, and 125 healthy persons who underwent physical examination in the same period were collected and divided into healthy group and stone group. The levels of sKL and Nrf2 were measured by ELISA. Correlation test was used to analyze the risk factors of calcium oxalate stones, logistic regression analysis was used to analyze the risk factors of calcium oxalate stones, and ROC curve was used to evaluate the sensitivity and specificity of sKL and Nrf2 in predicting urinary calculi. RESULTS: Compared with the healthy group, the plasma sKL level in the stone group decreased (111.53 ± 27.89 vs 130.68 ± 32.51), while the plasma Nrf2 level increased (300.74 ± 114.31 vs 246.74 ± 108.22). There was no significant difference in the distribution of age and sex between the healthy group and the stone group, but there were significant differences in plasma levels of WBC, NEUT, CRP, BUN, BUA, SCr, BMI, and eating habits. The results of correlation test showed that the level of plasma Nrf2 was positively correlated with SCr (r = 0.181, P < 0.05) and NEUT (r = 0.144 P < 0.05). Plasma sKL was not significantly correlated with Nrf2 (r = 0.047, P > 0.05), WBC (r = 0.108, P > 0.05), CRP (r = - 0.022, P > 0.05), BUN (r = - 0.115, P > 0.05), BUA (r = - 0.139, P > 0.05), SCr (r = 0.049, P > 0.05), and NEUT (r = 0.027, P > 0.05). Plasma Nrf2 was not significantly correlated with WBC (r = 0.097, P > 0.05), CRP (r = 0.045, P > 0.05), BUN (r = 0.122, P > 0.05), and BUA (r = 0.122, P > 0.05); (r = 0.078, P > 0.05) had no significant correlation. Logistic regression showed that elevated plasma sKL (OR 0.978, 95% CI 0.969 ~ 0.988, P < 0.05) was a protective factor for the occurrence of calcium oxalate stones, BMI (OR 1.122, 95% CI 1.045 ~ 1.206, P < 0.05), dietary habit score (OR 1.571, 95% CI 1.221 ~ 2.020, P < 0.05), and WBC (OR 1.551, 95% CI 1.423 ~ 1.424, P < 0.05). Increased NEUT (OR 1.539, 95% CI 1.391 ~ 1.395, P < 0.05) and CRP (OR 1.118, 95% CI: 1.066 ~ 1.098, P < 0.05) are risk factors for the occurrence of calcium oxalate stones. CONCLUSION: Plasma sKL level decreased and Nrf2 level increased in patients with calcium oxalate calculi. Plasma sKL may play an antioxidant role in the pathogenesis of calcium oxalate stones through Nrf2 antioxidant pathway.


Calculi , Kidney Calculi , Nephrolithiasis , Urinary Calculi , Urolithiasis , Humans , Calcium Oxalate/metabolism , Antioxidants , Urinary Calculi/metabolism , Calcium , Kidney Calculi/metabolism , Urolithiasis/metabolism
20.
Front Immunol ; 14: 1142207, 2023.
Article En | MEDLINE | ID: mdl-37228601

Kidney stone disease (KSD) is one of the earliest medical diseases known, but the mechanism of its formation and metabolic changes remain unclear. The formation of kidney stones is a extensive and complicated process, which is regulated by metabolic changes in various substances. In this manuscript, we summarized the progress of research on metabolic changes in kidney stone disease and discuss the valuable role of some new potential targets. We reviewed the influence of metabolism of some common substances on stone formation, such as the regulation of oxalate, the release of reactive oxygen species (ROS), macrophage polarization, the levels of hormones, and the alternation of other substances. New insights into changes in substance metabolism changes in kidney stone disease, as well as emerging research techniques, will provide new directions in the treatment of stones. Reviewing the great progress that has been made in this field will help to improve the understanding by urologists, nephrologists, and health care providers of the metabolic changes in kidney stone disease, and contribute to explore new metabolic targets for clinical therapy.


Kidney Calculi , Humans , Kidney Calculi/etiology , Kidney Calculi/metabolism , Reactive Oxygen Species , Oxalates
...